
 1

AN ITERATIVE ROUTE CONSTRUCTION AND IMPROVEMENT
ALGORITHM FOR THE VEHICLE ROUTING PROBLEM WITH SOFT

AND HARD TIME WINDOWS

Miguel Andres Figliozzi
College of Engineering and Computer Science

Portland State University-CEE
Portland 97201-0751, USA
e-mail: figliozzi@pdx.edu

ABSTRACT

The joint solution of routing problems with soft and hard time windows has valuable practical
applications. Simultaneous solution approaches to both types of problems are needed when:
(a) the number of routes needed for hard time windows exceeds the number of available
vehicles, (b) a study of cost-service tradeoffs is required or the dispatcher has qualitative
information regarding the relative importance of hard time window constraints across
customers. A new Iterative Route Construction and Improvement (IRCI) algorithm of average
run time performance 2()O n is proposed to sequentially solve Vehicle Routing Problems with
Soft Time Windows (VRPSTW) and Hard Time Windows (VRPHTW). Due to its modular
and hierarchical design, the IRCI algorithm is intuitive, easy to code, and able to
accommodate general cost and penalty functions. The solution quality and computational time
of the new algorithm is compared against existing results on benchmark problems for the
VRPHTW and VRPSTW. Furthermore, the algorithm can be used to obtain faster
simultaneous solutions for both VRPHTW and VRPHTW problems using the soft time
windows solutions as a lower bound for hard time window problems. Despite its simplicity
and flexibility, the algorithm performs well in terms of solution quality and speed in instances
with soft and hard time windows.

Keywords: vehicle routing, soft and hard time windows, route construction and improvement
algorithms.

 2

1. INTRODUCTION

The Vehicle Routing Problem with Hard Time Windows (VRPHTW) has a significant body

of literature. Clearly, the VRPHTW is a problem with practical applications in distribution

and logistics due to the rising importance of just-in-time (JIT) production systems and the

increasingly tight coordination of supply chain operations. In comparison, the Vehicle

Routing Problem with Soft Time Windows (VRPSTW) has received meager attention. The

VRPSTW is a relaxation of the VRPHTW; in the former, time windows can be violated if a

penalty is paid; in the latter violations are infeasible.

The VRPSTW also has many practical applications (Chiang and Russell, 2004): (1) relaxing

time windows can result in lower total costs without hurting customer satisfaction

significantly; (2) many applications do not require hard time windows – e.g. the delivery of

fuel/gas to service stations, (3) travel times cannot be accurately known in many practical

applications, and (4) VRPSTW approaches can be used to solve VPRHTW if the penalties are

modified appropriately. In addition, VRPSTW solutions provide a workable alternative plan

of action when the problem with hard time windows is infeasible.

The objective of this paper is to develop one algorithm that can be applied sequentially to

solve VRPSTW and VRPHTW instances. It is useful for dispatchers to have the solutions to

both VRPSTW and VRPHTW problems when: (a) the number of routes needed for the HTW

case exceeds the number of available vehicles, (b) a study of cost-service tradeoffs is required,

and (c) the dispatcher has qualitative information regarding the relative importance of service

level across customers. For example, in many practical situations late deliveries have penalties

that significantly exceed the penalties for early delivery. In addition, customers may be

 3

incapable or unwilling to set precise time windows in advance and simply prefer the

flexibility to alter their pickup or delivery requests (Powell et al., 2002).

This paper provides a solution approach that solves both soft and hard problems

simultaneously. The rest of this paper is organized into five additional sections. Section two

briefly reviews the relevant literature on VRPHTW and VRPSTW problems. Section three

introduces the mathematical notation and describes the new iterative route construction and

improvement (IRCI) algorithm. Section four compares IRCI computation time and solution

quality against existing solutions available in the literature. Section five discusses IRCI

algorithmical properties. Section six ends with conclusions.

2. LITERATURE REVIEW

Heuristics to solve the VRPHTW can be classified – in increasing order of solution quality –

as construction heuristics, local search heuristics, and metaheuristics. Although

metaheuristics generally produce solutions of higher quality this is usually at the expense of

significantly longer computation times. There is a clear trade-off between computation time

and solution quality.

Route construction algorithms work by inserting customers one at a time into partial routes

until a feasible solution is obtained. Construction heuristics include the work of Solomon

(1987), Potvin and Rousseau (1993) and Ioannou et al. (2001). Local search methods

improve on feasible solutions performing exchanges within a neighborhood while maintaining

the feasibility of the solutions. Some of the most successful local improvement methods

include the algorithms proposed by Russel (1995), Caseau and Laburthe (1999), Cordone

and Calvo (2001), and Braysy (2002).

 4

Metaheuristics include a diverse set of methods such as simulated annealing, genetic

algorithms, tabu search, ant-colony, and constraint programming. Some of the most successful

methaheuristics include the algorithms proposed by Taillard et al. (1997), Liu and Shen

(1999), Homberger and Gehring (1999), Berger et al. (2003), and Braysy (2003). For

additional references and a review of the large body of VRPHTW research the reader is

referred to a recent comprehensive survey by Braysy and Gendreau (2005a,b).

The body of work related to the VRPSTW is relatively scant. Early work on the topic includes

the work of Sexton and Choi (1986) using Benders decomposition to solve a single-vehicle

pickup and delivery routing problem. Ferland and Fortin (1989) solves a variations of the

VRPSTW where customers’ time windows are adjusted to lower service costs. Koskosidis et

al. (1992) propose a generalized assignment problem of customers to vehicles and a series of

traveling salesman problems with soft time windows constraints.

Balakrishnan (1993) proposes construction heuristics for the VRPSTW based on the nearest

neighbor, Clarke and Wright savings, and space–time rules algorithms. The heuristics are

tested on a subset of the Solomon set problems for hard time windows using linear penalty

functions. Taillard et al. (1997) propose a tabu search heuristic to solve a VRPSTW as

proposed by Balakrishnan, i.e. with linear penalty functions. The tabu search algorithm

produced very good results on the Solomon set with hard time windows; however, no results

are reported for the VRPSTW.

Ioannou et al. (2003) solves Solomon problems and extended Solomon problems of up to 400

customers with a nearest neighbor that generate and modify customer time windows to find

lower cost solutions; no computation times are reported. Chiang and Russell (2004) uses a

 5

tabu search approach with a mixed neighborhood structure and advance recovery to find some

of the best solutions ever reported for Solomon VRPSTW instances. The algorithm designed

by Ibaraki et al. (2005) is another metaheuristic that could handle soft time-window

constraints and penalties using a local search based on a cyclic-exchange neighborhood to

assign and sequence customers; only results for instances with hard time windows are

reported . Calvete et al. (2007) propose a goal programming approach to the vehicle routing

and solve medium size problems (less than 70 customers) with soft and hard time windows,

a heterogeneous fleet of vehicles, and multiple objectives.

As indicated by Braysy and Gendreau (2005a,b), fair and meaningful comparisons of vehicle

routing heuristics require standard benchmark problems and the full reporting of : (a) solution

quality, (b) number of run needed and computation time per run, and (c) computing power or

processor speed. From the survey of the VRPSTW only two journal publications comply with

these prerequisites: Balakrishnan (1993) and Chiang and Russell (2004). Regarding

VRPHTW, only Taillard et al. (1997) and Ibaraki et al. (2005) present algorithms that are

designed to handle soft and hard time windows and also comply with the reporting of solution

quality, computation time, and processor speed. Section 5 compares IRCI results with

previous results found in the literature in terms of solution quality and computational time.

3. SOLUTION ALGORITHM

This section firstly introduces a precise mathematical definition of the VRPHTW and

VRPSTW studied in this research. The remainder of this section is to describe the solution

algorithm.

 6

Problem Definition

The vehicle routing problem with hard time windows (VRPHTW) studied in this research can

be described as follows. Let (,)G V A= be a graph where 0(,....,)nV v v= is a vertex set and

{(,) : , }i jA v v i j i j V= ≠ ∧ ∈ is an arc set. Vertex 0v denotes a depot at which the routes of

m identical vehicles of capacity maxq start and end. The set of vertices 1{ ,....,)nC v v=

specify the location of a set of n customers. Each vertex in V has an associated demand

0iq ≥ , a service time 0is ≥ , and a service time window [,]i ie l . Each arc (,)i jv v has an

associated constant distance 0i jd > and travel time 0i jt > . The arrival time of a vehicle at

customer ,i i C∈ is denoted ia and its departure time ib ; the beginning of service time is

denoted iy . The primary objective function for the VRPHTW is the minimization of the

number of routes. A secondary objective is the minimization of total time or distance. The

solution to the VRPHTW must satisfy the following:

(a) the value of m is not specified initially, it is an output of the solution algorithm;

(b) a route cannot start before 0e and cannot end after 0l ;

(c) service to customer i cannot start before ie and cannot start after il ;

(d) every route starts and ends at the depot 0v ;

(e) every customer is visited exactly once by one vehicle; and

(f) the total demand of any vehicle route does not exceed the vehicle capacity.

The VRPSTW is a relaxation of the VRPHTW. With soft time windows, there is an

allowable violation of time windows denoted max 0P ≥ . The time window of each customer

,i i C∈ can be enlarged to # #
max max[,] [,]i i i ie P l P e l− + = . In addition, an early penalty

()e i ip e y− is applied if service time starts early, i.e. #[,]i i iy e e∈ . Similarly, a late penalty

 7

()l i ip y l− is applied if service starts late, i.e. #[,]i i iy l l∈ . The primary objective function for

the VRPSTW is the minimization of the number of routes. A secondary objective is the

minimization of the number of time window violations. A third objective is the minimization

of total time or distance plus penalties for early or late deliveries. It is important to notice that

the depot time windows as well as the maximum route duration are not changed as a result of

the customers’ time window relaxation.

It is commonly assumed in the literature that fix costs associated with each additional route

(vehicle) outweigh travel time or distance related costs. As discussed in Section 5, the

presented IRCI algorithm can be applied to any hard or soft time window problem with an

objective function that is a combination of positive functions of fleet size, travel time, travel

distance, and early/late penalties.

Solution Algorithms

The solution method is divided into two phases: route construction and route improvement.

The route construction phase utilizes two algorithms: (a) an auxiliary route building algorithm

and (b) a route construction algorithm. The route improvement phase also utilizes two

algorithms: (c) a route improvement algorithm and (d) a service time improvement algorithm.

Using a bottom up approach the algorithms are introduced in the following order: (a) the

auxiliary algorithm, (b) the construction algorithm, (c) the route improvement algorithm, and

(d) the start time improvement algorithm.

 8

(a) The Auxiliary Algorithm

The auxiliary routing algorithm rH can be any heuristic that given a starting vertex, a set of

customers, and a depot location returns a set of routes that satisfy the constraints of the

VRPHTW or VRPSTW.

In this research rH is a generalized nearest neighbor heuristics (GNNH). The GNNH has four

inputs: (a) the weights or parameters for “generalized cost” function denoted by

0 1{ , ,...., }iδ δ δΔ = , (b) an initial vertex denoted by iv , (c) a set of customers to route denoted

by C , and (d) a depot location denoted by 0v . The GNNH starts every route by finding the

unrouted customer with the least appending “generalized cost”. At every subsequent iteration,

the heuristics searches for the remaining unrouted customer with the least appending cost.

The “generalized cost” function used in this research accounts for geographical and temporal

closeness among customers, the remaining capacity in the vehicle, and the cost of adding a

new vehicle if the next customer is infeasible. Let i denote the initial vertex and let j denote

the customer to append next. Let iq denote the remaining capacity of the vehicle after serving

customer i . The service at a customer ,i i V∈ begins at time max(,)i i iy a e= . The generalized

cost of going from customer i to customer j is estimated as:

1 2 3 4g(, ,) (()) (()) ()ij j i i j i i ij i ji j d y a s l a s t q dδ δ δ δΔ = + − + + − + + + −

The parameter 2δ takes into account the “slack” between the completion of service at i and

earliest feasible beginning of service at j , i.e. max(,)j i i ij jy y s t e= + + . Following Solomon’s

approach (1987), the parameter 3δ takes into account the “urgency” of serving customer j

 9

expressed as the time remaining until the vehicle’s last possible start. The parameter 4δ is

introduced in this research and takes into account the capacity slack of the vehicle after

serving customer j .

If customer j is infeasible, i.e. it cannot be visited after serving customer i , the cost of ending

customer 'i s route and starting a new one to serve customer j is estimated as:

0 1 0 2 3 0 4 maxg(, ,) () ()j j j j ji j d y l t q dδ δ δ δ δΔ = + + + − + −

The parameter 0δ is the cost of adding a new vehicle. The same GNNH can be applied to

VRPSTW with the addition of two terms. For feasible customers:

1 2 3 4

5 6

g(, ,) (()) (()) ()

[] []
ij j i i j i i ij i j

j j j j

i j d a a s l a s t q d

e a a l

δ δ δ δ

δ δ+ +

Δ = + − + + − + + + − +

+ − + −

The parameters 5δ and 6δ are added to account for possible early or late service penalties

respectively; for infeasible customers 0δ is added. With soft time windows, the service at a

customer ,i i V∈ begins at time #max(,)i i iy a e= . For problems with general time windows,

i.e. two or more time window intervals, the generalized cost is calculated for each time

interval and the least expensive interval provides the generalized cost for that particular

customer.

The auxiliary route heuristic is defined as r 0(, , ,)iv C vΔH where 0 1 6{ , ,...., }δ δ δΔ= are the

parameters of the generalized cost function, iv is the vertex where the first route starts, C is

the set of customers to route, and 0v the depot where all routes end and all additional routes

 10

start – with the exception of the first route that starts at iv . In all cases, the deltas are positive

weights that satisfy: 1 2 3 1δ δ δ+ + = and 0 {0,1,...,6}i iδ ≥ ∈ .

(b) The Route Construction Algorithm

In this algorithm, denoted cH , routes are constructed sequentially. Given a partial solution and

a set of unrouted customers, the algorithm uses the auxiliary heuristic rH to search for the

feasible least cost set of routes. The algorithm also uses an auxiliary function w(, ,g,)iv C W

that given a set of unrouted customers C , a vertex iv C∉ , and a generalized cost function

g(, ,)i jv vΔ returns a set of vertexes with the lowest generalized costs g(, ,)i jv vΔ for all

jv C∈ .

Functions or Algorithms:

rH : Route building heuristic.

w(, ,g,)iv C W : returns set of vertexes with the lowest generalized costs

Data:

C : Set of customers to route (not including the depot 0v)

 LLimit = initial number of routes or best known lower bound

W : Width of the search, number of solutions to be built and compared before adding a

customer to a route.

Δ : space of the route heuristic generalized cost function parameters

 11

START cH

0start v← 1

0start v← 2

0bestSequence v← 3
#vehicles min veh lowestCost← ← ←∞ 4
Ccopy C← 5

for each Δ ∈Δ 6
 while C ≠ ∅ AND #LLimit vehicles< AND # #vehicles min veh≤ do 7

 min(,| |)W W C← 8

* w(, ,g,)C start C W← 9

 for each *
iv C∈ 10

 if r 0c((, , ,))ibestSequence v C v∪ ΔH < lowestCost then 11

 r 0c((, , ,))ilowestCost bestSequence v C v← ∪ ΔH 12

ilowestNext v← 13
 end if 14

 end for 15
start lowestNext← 16

\C C lowestNext← 17

r 0(, , ,)R bestSequence lowestNext C v← ∪ ΔH 18
bestSequence bestSequence lowestNext← ∪ 19
vehicles ← cardinality of the set of routes R 20

 end while 21
 C Ccopy← 22
 if # #min veh vehicles> 23
 # #min veh vehicles← 24
 end if 25
end for26

Output:
Best set of routes R that serve all C customers

END cH

The conditions in the while-loop that starts in line 7 reduce the number of unnecessary

computations after a lower bound have been reached or when a particular instance of the cost

parameters Δ ∈Δ are producing a solution with a larger number of routes. The generalized

cost function g that is used in rH must not be confused with the objective cost function c

 12

that is used in cH or the improvement heuristic iH ; the latter cost function is the sum of the

accrued vehicle, distance, time, or penalty costs as indicated in the objective function.

(c) The Route Improvement Algorithm

After the construction is finished, routing costs can be reduced using a route improvement

algorithm. The improvement algorithm works on a subset of routes S . In this algorithm two

functions are introduced. The function k (, ,)p ir S p returns a set of p routes that belong to

S and are located in the proximity of route ir . In this research, the distance between routes’

centers of gravity was used as a measure of geographic proximity. By definition, the distance

of route ir to itself is zero. Hence, the route ir is always included in the output of the set

function k (, ,)p ir S p .

The function k (,)s R s orders the set of routes R from smallest to largest based on the number

of customers per route and then returns a set of 1s ≥ routes with the least number of

customers; e.g. k (,1)s R will return the route with the least number of customers. If two or

more routes have the same number of customers, ties are solved drawing random numbers. To

simplify notation the term ()C S is the set of customers served by the set of routes S .

Functions or Algorithms:

cH : Route building heuristic

ks and kg : route selection functions

Data:

W : Number of solutions to be built and compared in the construction heuristic

 13

Δ : Generalized cost parameters of the auxiliary route heuristic

s: Number of routes potentially considered for improvement

p : Number of neighboring routes to ir that are reconstructed

R : Set of routes

LLimit = lowest number of vehicles or stop condition for the cH heuristic

 START iH
min(,| | 1)s s R← − 1
min(,)p s p← 2
k (,)sS R s R← ⊆ 3

' \S R S← 4
while | | 1S > do 5

* k (,1)sr S← 6
*k (, ,)pG r S p← 7

c r' (, , , , , (),)G W s p C G LLimit← ΔH H 8
if c(')G < c()G then 9
 \R R G← 10
 'R R G← ∪ 11

\S S G← 12
 'S S G← ∪ 13
 end if 14

k (,1)sr S= 15
\S S r= 16

if | ' | 0S > then 17
 ' k (',1)sr S= 18

'S S r← ∪ 19
' '/ 'S S r← 20

 min(, | |)s s S← 21

 min(,)p s p← 22
end while 23

Output:
R set of improved routes

END iH

 14

(d) Start time improvement algorithm

With soft time windows, to reduce the number of roads during the construction and

improvement algorithms, the service at a customer ,i i V∈ begins at time #max(,)i i iy a e= .

However, once the algorithm iH finishes, the sequence of customers per route is defined and

some early time windows may be unnecessary.

This algorithm eliminates unnecessary usage of early time windows. The algorithm operates

backwards, starting from the last customer, the algorithm verifies if a service time i iy e< can

be moved to i iy e= without violating the following customer time window. Assuming that

customer j follows customer i , then the service time can be moved later if two conditions are

met: (1) i i ij je s d l+ + ≤ if customer j is not using a soft time windows or (2) #
i i ij je s d l+ + ≤

if customer j is using a late soft time window. In the former case, the service time for

customer i is set to min((),)i j i ij iy l s d l= − + ; in the latter case, the service time for customer

i is set to #min((),)i j i ij iy l s d l= − + .

Next section compares the IRCI against other solution approaches using standard benchmark

problems for the VRPHTW and VRPSTW.

4. COMPUTATIONAL RESULTS

As seen in the previous section, at its core the IRCI algorithm is a construction algorithm were

routes are sequentially built and improved. This section compares the results of the IRCI

algorithm against other solution methods that report solution quality and computation time on

Salomon benchmark problems for the VRPHTW and VRPSTW. The comparison only

 15

includes other construction algorithms or solution approaches that were designed for both

hard and soft time windows.

The well-known 56 Solomon benchmark problems for the VRPHTW are based on six groups

of problem instances with 100 customers. The six problem classes are named C1, C2, R1, R2,

RC1, and RC2. Customer locations were randomly generated (problem sets R1 and R2),

clustered (problem sets C1 and C2), or mixed with randomly generated and clustered

customers (problem sets RC1 and RC2). Problem sets R1, C1, and RC1 have a shorter

scheduling horizon, tighter time windows, and fewer customers per route than problem sets

R2, C2, and RC2 respectively.

<< INSERT TABLE 1 HERE>>

Table 1 presents the summary of the results when construction heuristics for the VRPHTW

are compared. Against the three construction heuristics proposed by Solomon, Potvin et al.

and Ioannou et al., the IRCI algorithm outperform them all in classes R1, C2, RC1, and RC2

while ties with the best in classes R2 and C1. Distance-wise, the performance of the IRCI

algorithm is superior in all six classes of problems. The IRCI produces results in a relatively

short time, less than12 seconds per 100 customer problems on average; however the other

simpler algorithms have shorter running times. The IRCI results presented in Table 1 and 2

were obtained first running a VRPSTW version of the Solomon instances to obtain a set of

lower bounds and STW results, and then using these bounds the VRPHTW was solved

afterwards. The reported time for the IRCI corresponds to the total time to solve both types of

problems for all 56 Solomon instances. The other references solve only the VRPHTW type.

 16

<< INSERT TABLE 2 HERE>>

Table 2 presents the summary of the results when the IRCI algorithm is compared against two

metaheuristics presented in the literature review that were explicitly designed to solve both

soft and hard time windows: the tabu search heuristics of Taillard et al. (1997) and the

composite metaheuristic of Ibaraki et al. (2005). As in Table 1, the reported time for the IRCI

corresponds to the total time to solve both types of problems for all 56 Solomon instances.

The other references solve only the VRPHTW type.

When compared to the Tabu heuristic of Taillard et al., with its 20 iterations, the results are

similar, though the IRCI is faster in computation time even accounting for the different

processing speed. The solution method proposed by Ibaraki et al. has a very good solution

quality but at the expense of lengthy computation times.

In the soft time window benchmark problems, the results of the IRCI are compared against the

results of prerequisites: Balakrishnan (1993) – denoted BAL in Tables 3 and 4 – and Chiang

and Russell (2004). The latter has two solution methods: tabu search and advance recovery

which are denoted Tables 3 and 4 by the initials TB and AR respectively.

<< INSERT TABLE 3 HERE>>

 17

Balakrishnan (1993) and Chiang and Russell (2004), the only references with time and cost

results for a standardized set of problems, solve a subset of Solomon problems setting a maxP

that can be either 10, 5, or 0 % of the total route duration 0 0()l e− . Balakrishnan (1993) and

Chiang and Russell (2004) also set a maximum vehicle waiting time limit maxW . The

maximum waiting time limits the amount of time that a vehicle can wait at a customer

location before starting service, i.e. a vehicle can arrive to customer i only after

max max()ie P W− − . Since the VRPSTW is a relaxation of the VRPHTW, a maximum waiting

time constraint maxW is clearly opposed to the spirit of the VRPSTW since a new constraint

completely unrelated to time windows is added1. Despite these shortfalls, a max 10%W =

constraint is added, mainly to facilitate comparisons in a level playing field.

Table 3 shows the results for the R1 benchmark problems with soft time windows; results for

max 10%P = and max 0%P = are shown. The latter is equivalent to the VRPHTW problem but

with the addition of the max 10%W = constraint. In addition to the number of vehicles and

distance, Tables 3 and 4 also show the number of customers where the time windows have

NOT been relaxed (%HTW); a higher %HTW indicates a better solution quality. As expected,

when max 0%P = the corresponding % HTW are all equal to 100 because there is no room to

relax the customers' time windows.

It can be observed that the IRCI algorithms perform very well against Balakrishnan’s

heuristic. Against tabu search (TS) the IRCI is almost tied but it performs betters in terms of

1 Further, if there are carrier’s costs associated with waiting time, e.g. parking, these costs can be incorporated
into the routing cost function c rather than imposing a hard time waiting constraint which is not usually found in
practical problems.

 18

customers that do not have time window violations. The IRCI solutions are not as good as the

advance recovery (AR) method. However, regarding computation times, the IRCI is

undoubtedly faster than the TS and without a doubt much faster than the AR method.

<< INSERT TABLE 4 HERE>>

The same trends are repeated in the RC1 benchmark problems with soft time windows. The

IRCI outperforms Balakrishnan’s and is competitive with the tabu search (TS) and advance

recovery (AR) approach but at significantly faster running times.

It can be observed that on average the IRCI performs well in benchmark instances against

simpler and more complex algorithms for hard and soft time windows. The average CPU

times are more than reasonable given the relatively modest processing capabilities of a 1.6

Mhz Pentium M laptop. In general, computation times are difficult to compare due to the

differences in processing power. The interested reader is referred to Dongarra’s work (2007)

which includes the results of a set of standard programs to measure processing power and to

compare the processing power of different machines. However, comparisons are not

straightforward because not all the processors are included and there always differences in

codes, compilers, and implementation computational efficiency.

5. DISCUSSION

The relative simplicity of the IRCI allows for a straightforward algorithmic analysis. The

auxiliary heuristic rH is called by the construction algorithm no more than | |nW Δ times;

where n is the number of customers. Hence, the asymptotic number of operations of the

 19

construction algorithm is of order r(| | (()))nW O nΔ H where r(())O nH denotes the

computational complexity of the auxiliary algorithm to route ncustomers.

The improvement procedure calls the construction procedure a finite number of times. The

number of calls is bounded by the number of routes | |R . Further, the called computational

time of the construction algorithm is r(| | (()))mW O mΔ H where m n< because only a subset

of routes is iteratively improved.

It is clear that the complexity and running time of the auxiliary heuristic rH will have a

substantial impact on the overall running time. Hence, a generalized nearest neighbor

heuristics of (GNNH) is used due to its reduced number of operations and computation time.

In particular, if the GNNH has 2()O n and W n< , then the worst case complexity for the

IRCI algorithm is of order 3()O n .

To test the average complexity, instances with different numbers of customers are run. Firstly,

the first 25 and 50 customers of each Solomon problem are taken to create instances with n=

25 and n=50 respectively. Secondly, to create and instance with n=200 customer, for each

customer in the original Solomon problem a “clone” is created but with new coordinates but

still keeping the characteristics of the problem as clustered, random, or random-clustered.

The summary results for the 56 Solomon problems are shown in Table 5. The results are

expressed as the ratio between each average running time and the running time for n=25. To

facilitate comparisons, the corresponding increases in running time ratios for 2()O n and

 20

3()O n are also presented. The results indicate that the average running time is increasing by

a factor of 2()O n as expected from the complexity analysis and the last column of Table 5.

<< INSERT TABLE 5 HERE>>

The proposed IRCI approach can accommodate cost functions that cover most practical

applications. The cost functions must be positive functions of fleet size, distance, time, or

penalties. Cost functions can be asymmetrical, e.g. p () p ()e lt t≠ where t accounts for the

early or late time. Additionally, cost functions are not required to be linear or identical.

Similarly, symmetry is not required and dij≠ dji or tij≠ tji does not affect the complexity of the

algorithm. That is, the corresponding penalty function can be non-convex and discontinuous

as long as it is piecewise linear. In addition, customers with two or more time windows can be

easily included in the auxiliary route construction algorithm. In addition, the number of routes

m is not specified initially and it is an output of the solution algorithm. The bounds for the

VRPHTW can be generated endogenously solving a relaxed VRPSTW beforehand.

The relatively simplicity and generality of the IRCI are important factors in real-world

applications. Although solution quality and computation times are two key factors to evaluate

vehicle routing heuristics, for practical implementations it is also crucial that algorithms are

relatively simple and flexible (Cordeau et al., 2002). According to Cordeau et al (2002) the

majority of the commercial software and in-house routing programs are still based on

somewhat simple and unsophisticated methodologies dating back to the 1960s. Some of the

reasons that explain this status quo are: (a) dispatchers preference for algorithms/programs

that are highly interactive and allow for manual improvements and the manipulation of

 21

constraints and customer priorities, (b) better results on benchmark problems are usually

obtained at the expense of too many parameters or complicated coding that lacks flexibility to

accommodate real-life constraints, (c) dispatcher may find algorithms with too many

parameters difficult to calibrate or even understand, and (d) solution approaches that are

markedly tailored to perform well on the benchmark problems may lack generality and

robustness in real-life problems. As indicated by Golden et al. (1998), algorithms should also

be compared not only by the number of parameters but also by how intuitive and reasonable

these parameters are from a users perspective.

6. CONCLUSIONS

The main contribution of this paper is to propose an efficient, simple, and flexible algorithm

to deal with general time window constraints and objective functions. The proposed IRCI

algorithm provides high quality solutions and requires small computation times when

compared with existing algorithms that can handle both hard and soft time window

constraints. For a problem with 100 customers, the joint solution of soft and hard time

window problems requires a few seconds The developed IRCI algorithm is based on a

modular and hierarchical algorithmic approach. Its average running time is of order 2()O n

and the worst case running time is of order 3()O n .

The flexibility of the IRCI algorithm allows for a sequential and integrated solution of routing

problems with soft and hard time windows. With both types of solutions, dispatchers can

easily identify the customers and time windows that are increasing the number of routes. Fast

solution times allow for cost-service tradeoff studies. In addition, soft time window solutions

provide a workable and realistic alternative plan of action when the problem with hard time

windows is infeasible.

 22

 23

ACKNOWLEDGEMENTS

The author gratefully acknowledges the Oregon Transportation, Research and Education

Consortium (OTREC) and the Department of Civil & Environmental Engineering in the

Maseeh College of Engineering & Computer Science at Portland State University for

sponsoring this research. The author would like to thank Stuart Bain, at the University of

Sydney, for his assistance coding during the early stages of this research and Myeonwoo Lim

, Computer Science Department at Portland State University, for assistance coding during the

final stages of this research. Any errors are the sole responsibility of the author.

 24

REFERENCES

BALAKRISHNAN, N. (1993) Simple Heuristics for the Vehicle Routeing Problem with Soft

Time Windows. The Journal of the Operational Research Society, 44, 279-287.

BERGER, J., BARKAOUI, M. & BRAYSY, O. (2003) A route-directed hybrid genetic

approach for the vehicle routing problem with time windows. INFOR, 41, 179–194.

BRAYSY, O. (2002) Fast local searches for the vehicle routing problem with time windows.

Infor, 40, 319-330.

BRAYSY, O. (2003) A Reactive Variable Neighborhood Search for the Vehicle-Routing

Problem with Time Windows. INFORMS Journal on Computing, 15, 347-368.

CALVETE, H. I., GALÉ, C., OLIVEROS, M. J. & SÁNCHEZ-VALVERDE, B. (2007) A

goal programming approach to vehicle routing problems with soft time windows star,

open. European Journal of Operational Research, 177, 1720-1733.

CASEAU, Y. & LABURTHE, F. (1999) Heuristics for Large Constrained Vehicle Routing

Problems. Journal of Heuristics, 5, 281-303.

CHIANG, W. C. & RUSSELL, R. A. (2004) A metaheuristic for the vehicle-routeing problem

with soft time windows. Journal of the Operational Research Society, 55, 1298-1310.

CORDEAU, J. F., GENDREAU, M., LAPORTE, G., POTVIN, J. Y. & SEMET, F. (2002) A

guide to vehicle routing heuristics. Journal Of The Operational Research Society, 53,

512-522.

CORDONE, R. & CALVO, R. W. (2001) A Heuristic for the Vehicle Routing Problem with

Time Windows. Journal of Heuristics, 7, 107-129.

DONGARRA, J. J. (2007) Performance of various computers using standard linear equations

software. Technical Report CS-89-85 - University of Tennessee Nov 20, 2007,

Accessed Nov 23, 2007, http://www.netlib.org/utk/people/JackDongarra/papers.htm.

FERLAND, J. A. & FORTIN, L. (1989) Vehicles Scheduling with Sliding Time Windows.

European Journal of Operational Research, 38, 213-226.

GOLDEN, B., WASIL, E., KELLY, J. & CHAO, I. (1998) Metaheuristics in Vehicle Routing.

IN CRAIGNIC, T. & LAPORTE, G. (Eds.) Fleet Management and Logistics. Boston,

Kluwer.

HOMBERGER, J. & GEHRING, H. (1999) Two evolutionary metaheuristics for the vehicle

routing problem with time windows. INFOR, 37, 297–318.

 25

IBARAKI, T., IMAHORI, S., KUBO, M., MASUDA, T., UNO, T. & YAGIURA, M. (2005)

Effective Local Search Algorithms for Routing and Scheduling Problems with General

Time-Window Constraints. Transportation Science, 39, 206-232.

IOANNOU, G., KRITIKOS, M. & PRASTACOS, G. (2001) A greedy look-ahead heuristic

for the vehicle routing problem with time windows. Journal Of The Operational

Research Society, 52, 523-537.

IOANNOU, G., KRITIKOS, M. & PRASTACOS, G. (2003) A problem generator-solver

heuristic for vehicle routing with soft time windows. Omega, 31, 41-53.

KOSKOSIDIS, Y. A., POWELL, W. B. & SOLOMON, M. M. (1992) An optimization-based

heuristic for vehicle routing and scheduling with soft time window constraints.

Transportation science, 26, 69-85.

LIU, F. H. F. & SHEN, S. Y. (1999) A route-neighborhood-based metaheuristic for vehicle

routing problem with time windows. European Journal of Operational Research, 118,

485-504.

POTVIN, J. & ROUSSEAU, J. (1993) A parallel route building algorithm for the vehicle

routing and scheduling problem with time windows. European Journal of Operational

Research, 66, 331–340.

POWELL, W., MARAR, A., GELFAND, J. & BOWERS, S. (2002) Implementing Real-Time

Optimization Models: A Case Application form the Motor Carrier Industry.

Operations Research, Vol50, N4, pp. 571-581.

RUSSELL, R. A. (1995) Hybrid heuristics for the vehicle routing problem with time

windows. Transportation science, 29, 156-166.

SEXTON, T. R. & CHOI, Y. M. (1986) Pickup and delivery of partial loads with" soft" time

windows. American Journal of Mathematical and Management Sciences, 6, 369-398.

SOLOMON, M. M. (1987) Algorithms For The Vehicle-Routing And Scheduling Problems

With Time Window Constraints. Operations Research, 35, 254-265.

TAILLARD, E., BADEAU, P., GENDREAU, M., GUERTIN, F. & POTVIN, J. Y. (1997) A

tabu search heuristic for the vehicle routing problem with soft time windows.

Transportation Science, 31, 170-186.

 26

TABLES

Table 1. VRPHTW Results for Construction Algorithms vs. IRCI

Average Number of Vehicles by Problem Class

Method R1 R2 C1 C2 RC1 RC2

(1) Solomon (1987) 13.58 3.27 10.00 3.13 13.50 3.88

(2) Potvin et al. (1993) 13.33 3.09 10.67 3.38 13.38 3.63

(3) Ioannou et al. (2003) 12.67 3.09 10.00 3.13 12.50 3.50

(4) IRCI 12.50 3.09 10.00 3.00 12.00 3.38

Average Distance

Method R1 R2 C1 C2 RC1 RC2

(1) Solomon (1987) 1,437 1,402 952 693 1,597 1,682

(2) Potvin et al. (1993) 1,509 1,387 1,344 798 1,724 1,651

(3) Ioannou et al. (2003) 1,370 1,310 865 662 1,512 1,483

(4) IRCI 1,262 1,171 872 656 1,420 1,342

Computation time for all 56 problems: (1) DEC 10, 1 run, 0.6 min.; (2) IBM PC, 1 run, 19.6 min.;

(3) Intel Pentium 133 MHz, 1 run, 4.0 min. (4) Intel Pentium M 1.6 Mz, 10.9 min

 27

Table 2. VRPHTW Results for Metaheuristic Algorithms vs. IRCI

Average Number of Vehicles by Problem Class

Method R1 R2 C1 C2 RC1 RC2

(1) Taillard et al. (1997) 12.64 3.00 10.00 3.00 12.08 3.38

(2) Ibaraki et al. (2002) 11.92 2.73 10.00 3.00 11.50 3.25

(3) IRCI 12.50 3.09 10.00 3.00 12.00 3.38

Average Distance by Problem Class

Method R1 R2 C1 C2 RC1 RC2

(1) Taillard et al. (1997) 1,220.4 1,013.4 828.5 590.9 1,381.3 1,198.6

(2) Ibaraki et al. (2002) 1,217.4 959.1 828.4 589.9 1,391.0 1,122.8

(3) IRCI 1,261.6 1,170.8 871.8 655.6 1,419.8 1,342.4

Computation time for all 56 problems: (1) Sun Sparc 10, 261 min.; (2) Pentium III 1 GHz, 250

min.; (3) Intel Pentium‐M 1.6 Mhz 10.9 min

 28

Table 3. VRPSTW Results for R1 Problems.

Wmax 10% 10%

Pmax 0% 10%

Method
(1)

BAL

(2)

TS

(3)

AR

(4)

IRCI

(1)

BAL

(2)

TS

(3)

AR

(4)

IRCI

R
10

1

Veh. 19 19 19 19 15 14 12 13

Distance 1,915 1,710 1,692 1,639 1,832 1,388 1,212 1,493

% HTW 100 100 100 100 62 49 8 39

R
10

2

Veh. 19 17 17 17 14 13 10 12

Distance 1,890 1,520 1,511 1,481 1,569 1,266 1,173 1,463

% HTW 100 100 100 100 81 59 33 60

R
10

3

Veh.

14 13 13 13 11 10 11

Distance

1,225 1,304 1,284 1,657 1,063 1,013 1,274

% HTW

100 100 100 83 65 58 73

R
10

9

Veh. 13 13 12 12 12 11 10 11

Distance 1,492 1,280 1,165 1,240 1,431 1,102 1,005 1,280

% HTW 100 100 100 100 90 72 47 82

A
V

ER
A

G
E

Veh. 17.0 15.8 15.3 15.3 13.5 12.3 10.5 12.3

Distance 1,766 1,434 1,418 1,411 1,622 1,205 1,101 1,467

% HTW 100 100 100 100 79.0 61.2 36.5 66.3

Computation time for each STW problem: (1) 25Mhz 80386, 17 to 73 seconds; (2)

2.25 Ghz Athlon, 52 to 82 seconds; (3) 2.25 Ghz Athlon, 448 to 692 seconds; (4) 1.6

Ghz Pentium-M, 4.5 to 4.9 seconds

 29

Table 4. VRPSTW Results for RC1 Problems.

Wmax 10% 10%

Pmax 0% 10%

Method
(1)

BAL

(2)

TS

(3)

AR

(4)

IRCI

(1)

BAL

(2)

TS

(3)

AR
(4) IRCI

R
C

10
1

Veh. 16 15 15 15 14 15 11 14

Distance 2,012 1,719 1,651 1,644 1,795 1,569 1,275 1,839

% HTW 100 100 100 100 61 62 27 73

R
C

10
2

Veh. 14 13 13 13 13 12 11 13

Distance 1,808 1,519 1,530 1,575 1,719 1,307 1,222 1,632

% HTW 100 100 100 100 83 68 56 81

R
C

10
3

Veh. 12 11 11 11 12 10 10 11

Distance 1,679 1,293 1,284 1,318 1,530 1,228 1,119 1,400

% HTW 100 100 100 100 92 85 65 92

R
C

10
6

Veh.

12 12 12 13 12 10 12

Distance

1,445 1,409 1,412 1,620 1,262 1,160 1,487

% HTW 100 100 100 100 97 77 49 92

A
V

ER
A

G
E

Veh. 14.0 12.8 12.8 12.8 13.0 12.3 10.5 12.5

Distance 1,833 1,494 1,469 1,488 1,666 1,342 1,194 1,590

% HTW 100 100 100 100 83.3 73.0 49.2 84.5

Computation time for each STW problem: (1) 25Mhz 80386, 17 to 73 seconds; (2)

2.25 Ghz Athlon, 52 to 82 seconds; (3) 2.25 Ghz Athlon, 448 to 692 seconds; (4) Intel

Pentium-M 1.6 Mhz 4.5 to 4.9 seconds

 30

Table 5. VRPTW Average Run Time Ratios – VRPHTW

(1)

n

(2)

2()O n

(3)

3()O n

(4)
Run
Time

Ratio*

(5)= (4)/(3)*100

% 3()O n

25 1 1 1.0 100%

50 4 8 2.9 36%

100 16 64 15.0 23%

200 64 512 86.3 17%

* The ratio of running times is taking the run time for n=25 as a base.

