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ABSTRACT 
 
The joint solution of routing problems with soft and hard time windows has valuable practical 
applications. Simultaneous solution approaches to both types of problems are needed when:  
(a) the number of routes needed for hard time windows exceeds the number of available 
vehicles, (b) a study of cost-service tradeoffs is required or the dispatcher has qualitative 
information regarding the relative importance of hard time window constraints across 
customers. A new Iterative Route Construction and Improvement (IRCI) algorithm of average 
run time performance 2( )O n  is proposed to sequentially solve Vehicle Routing Problems with 
Soft Time Windows (VRPSTW) and Hard Time Windows (VRPHTW). Due to its modular 
and hierarchical design, the IRCI algorithm is intuitive, easy to code, and able to 
accommodate general cost and penalty functions. The solution quality and computational time 
of the new algorithm is compared against existing results on benchmark problems for the 
VRPHTW and VRPSTW. Furthermore, the algorithm can be used to obtain faster 
simultaneous solutions for both VRPHTW and VRPHTW problems using the soft time 
windows solutions as a lower bound for hard time window problems. Despite its simplicity 
and flexibility, the algorithm performs well in terms of solution quality and speed in instances 
with soft and hard time windows.  
 
Keywords: vehicle routing, soft and hard time windows, route construction and improvement 
algorithms.  
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1. INTRODUCTION 

The Vehicle Routing Problem with Hard Time Windows (VRPHTW) has a significant body 

of literature. Clearly, the VRPHTW is a problem with practical applications in distribution 

and logistics due to the rising importance of just-in-time (JIT) production systems and the 

increasingly tight coordination of supply chain operations. In comparison, the Vehicle 

Routing Problem with Soft Time Windows (VRPSTW) has received meager attention. The 

VRPSTW is a relaxation of the VRPHTW; in the former, time windows can be violated if a 

penalty is paid; in the latter violations are infeasible. 

 

The VRPSTW also has many practical applications (Chiang and Russell, 2004): (1) relaxing 

time windows can result in lower total costs without hurting customer satisfaction 

significantly; (2) many applications do not require hard time windows – e.g. the delivery of 

fuel/gas to service stations,  (3) travel times cannot be accurately known in many practical 

applications, and (4) VRPSTW approaches can be used to solve VPRHTW if the penalties are 

modified appropriately. In addition, VRPSTW solutions provide a workable alternative plan 

of action when the problem with hard time windows is infeasible.  

 

The objective of this paper is to develop one algorithm that can be applied sequentially to 

solve VRPSTW and VRPHTW instances.  It is useful for dispatchers to have the solutions to 

both VRPSTW and VRPHTW problems when:  (a) the number of routes needed for the HTW 

case exceeds the number of available vehicles, (b) a study of cost-service tradeoffs is required, 

and (c) the dispatcher has qualitative information regarding the relative importance of service 

level across customers. For example, in many practical situations late deliveries have penalties 

that significantly exceed the penalties for early delivery. In addition, customers may be 
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incapable or unwilling to set precise time windows in advance and simply prefer the 

flexibility to alter their pickup or delivery requests (Powell et al., 2002).  

 

This paper provides a solution approach that solves both soft and hard problems 

simultaneously. The rest of this paper is organized into five additional sections. Section two 

briefly reviews the relevant literature on VRPHTW and VRPSTW problems. Section three 

introduces the mathematical notation and describes the new iterative route construction and 

improvement (IRCI) algorithm. Section four compares IRCI computation time and solution 

quality against existing solutions available in the literature. Section five discusses IRCI 

algorithmical properties. Section six ends with conclusions.  

2. LITERATURE REVIEW 

Heuristics to solve the VRPHTW can be classified – in increasing order of solution quality – 

as construction heuristics, local search heuristics, and metaheuristics.  Although 

metaheuristics generally produce solutions of higher quality this is usually at the expense of 

significantly longer computation times. There is a clear trade-off between computation time 

and solution quality.  

 

Route construction algorithms work by inserting customers one at a time into partial routes 

until a feasible solution is obtained.  Construction heuristics include the work of Solomon 

(1987), Potvin and Rousseau (1993) and Ioannou et al. (2001).  Local search methods 

improve on feasible solutions performing exchanges within a neighborhood while maintaining 

the feasibility of the solutions. Some of the most successful local improvement methods 

include the algorithms proposed by Russel (1995),  Caseau and Laburthe  (1999), Cordone 

and Calvo (2001), and Braysy (2002).  
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Metaheuristics include a diverse set of methods such as simulated annealing, genetic 

algorithms, tabu search, ant-colony, and constraint programming. Some of the most successful 

methaheuristics include the algorithms proposed by  Taillard et al. (1997), Liu and Shen 

(1999), Homberger and Gehring (1999), Berger et al. (2003), and Braysy (2003). For 

additional references and a review of the large body of VRPHTW research the reader is 

referred to a recent comprehensive survey by Braysy and Gendreau (2005a,b).  

 

The body of work related to the VRPSTW is relatively scant. Early work on the topic includes 

the work of Sexton and Choi (1986)  using Benders decomposition to solve a single-vehicle 

pickup and delivery routing problem. Ferland and Fortin (1989) solves a variations of the 

VRPSTW where customers’ time windows are adjusted to lower service costs. Koskosidis et 

al. (1992) propose a generalized assignment problem of customers to vehicles and a series of 

traveling salesman problems with soft time windows constraints.   

 

Balakrishnan (1993) proposes construction heuristics for the VRPSTW based on the nearest 

neighbor, Clarke and Wright savings, and space–time rules algorithms. The heuristics are 

tested on a subset of the Solomon set problems for hard time windows using linear penalty 

functions. Taillard et al. (1997)  propose a tabu search heuristic to solve a VRPSTW  as 

proposed by Balakrishnan, i.e. with linear penalty functions. The tabu search algorithm 

produced very good results on the Solomon set with hard time windows; however, no results 

are reported for the VRPSTW.  

 

Ioannou et al. (2003) solves Solomon problems and extended Solomon problems of up to 400 

customers with a nearest neighbor that generate and modify customer time windows to find 

lower cost solutions; no computation times are reported. Chiang and Russell (2004) uses a 
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tabu search approach with a mixed neighborhood structure and advance recovery to find some 

of the best solutions ever reported for Solomon VRPSTW instances.  The algorithm designed 

by Ibaraki et al. (2005) is another metaheuristic that could handle soft time-window 

constraints and penalties  using a local search based on a cyclic-exchange neighborhood to 

assign and sequence customers; only results for instances with hard time windows are 

reported . Calvete et al. (2007) propose a goal programming approach to the vehicle routing 

and solve medium size problems (less than 70 customers) with soft and hard time windows, 

a heterogeneous fleet of vehicles, and multiple objectives.  

 

As indicated by Braysy and Gendreau (2005a,b),  fair and meaningful comparisons of vehicle 

routing heuristics require standard benchmark problems and the full reporting of : (a) solution 

quality, (b) number of run needed and computation time per run, and (c) computing power or 

processor speed. From the survey of the VRPSTW only two journal publications comply with 

these prerequisites: Balakrishnan (1993) and Chiang and Russell (2004). Regarding 

VRPHTW, only Taillard et al. (1997) and Ibaraki et al. (2005) present algorithms that are 

designed to handle soft and hard time windows and also comply with the reporting of solution 

quality, computation time, and processor speed. Section 5 compares IRCI results with 

previous results found in the literature in terms of solution quality and computational time. 

3. SOLUTION ALGORITHM 

This section firstly introduces a precise mathematical definition of the VRPHTW and 

VRPSTW studied in this research. The remainder of this section is to describe the solution 

algorithm. 
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Problem Definition 

The vehicle routing problem with hard time windows (VRPHTW) studied in this research can 

be described as follows.  Let ( , )G V A=  be a graph where 0( ,...., )nV v v= is a vertex set and

{( , ) : , }i jA v v i j i j V= ≠ ∧ ∈  is an arc set.  Vertex 0v denotes a depot at which the routes of

m  identical vehicles of capacity maxq  start and end.  The set of vertices 1{ ,...., )nC v v=  

specify the location of a set of n  customers. Each vertex in V  has an associated demand

0iq ≥  , a service time 0is ≥ , and a service time window [ , ]i ie l . Each arc ( , )i jv v  has an 

associated constant distance 0i jd >  and travel time 0i jt > . The arrival time of a vehicle at 

customer ,i i C∈  is denoted ia and its departure time ib ;  the beginning of service time is 

denoted iy . The primary objective function for the VRPHTW is the minimization of the 

number of routes. A secondary objective is the minimization of total time or distance. The 

solution to the VRPHTW must satisfy the following: 

(a) the value of m  is not specified initially, it is an output of the solution algorithm; 

(b) a route cannot start before 0e  and cannot end after 0l ;  

(c) service to customer i cannot start before ie  and cannot start after il ; 

(d) every route starts and ends at the depot 0v ; 

(e) every customer is visited exactly once by one vehicle; and 

(f) the total demand of any vehicle route does not exceed the vehicle capacity. 

 

The VRPSTW is a relaxation of the VRPHTW.  With soft time windows, there is an 

allowable violation of time windows denoted max 0P ≥ . The time window of each customer 

,i i C∈ can be enlarged to # #
max max[ , ] [ , ]i i i ie P l P e l− + = . In addition, an early penalty

( )e i ip e y−  is applied if service time starts early, i.e. #[ , ]i i iy e e∈ . Similarly, a late penalty
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( )l i ip y l−  is applied if service starts late, i.e. #[ , ]i i iy l l∈ . The primary objective function for 

the VRPSTW is the minimization of the number of routes. A secondary objective is the 

minimization of the number of time window violations. A third objective is the minimization 

of total time or distance plus penalties for early or late deliveries. It is important to notice that 

the depot time windows as well as the maximum route duration are not changed as a result of 

the customers’ time window relaxation.  

 

It is commonly assumed in the literature that fix costs associated with each additional route 

(vehicle) outweigh travel time or distance related costs. As discussed in Section 5, the 

presented IRCI algorithm can be applied to any hard or soft time window problem with an 

objective function that is a combination of positive functions of fleet size, travel time, travel 

distance, and early/late penalties. 

 

Solution Algorithms 

The solution method is divided into two phases: route construction and route improvement.  

The route construction phase utilizes two algorithms: (a) an auxiliary route building algorithm 

and (b) a route construction algorithm. The route improvement phase also utilizes two 

algorithms: (c) a route improvement algorithm and (d) a service time improvement algorithm.  

Using a bottom up approach the algorithms are introduced in the following order: (a) the 

auxiliary algorithm, (b) the construction algorithm, (c) the route improvement algorithm, and 

(d) the start time improvement algorithm.   
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(a) The Auxiliary Algorithm  

The auxiliary routing algorithm rH can be any heuristic that given a starting vertex, a set of 

customers, and a depot location returns a set of routes that satisfy the constraints of the 

VRPHTW or VRPSTW.  

 

In this research rH is a generalized nearest neighbor heuristics (GNNH). The GNNH has four 

inputs: (a) the weights or parameters for “generalized cost” function denoted by

0 1{ , ,...., }iδ δ δΔ = , (b) an initial vertex denoted by iv , (c) a set of customers to route denoted 

by C , and (d) a depot location denoted by 0v .  The GNNH starts every route by finding the 

unrouted customer with the least appending “generalized cost”.  At every subsequent iteration, 

the heuristics searches for the remaining unrouted customer with the least appending cost.  

 

The “generalized cost” function used in this research accounts for geographical and temporal 

closeness among customers, the remaining capacity in the vehicle, and the cost of adding a 

new vehicle if the next customer is infeasible. Let i  denote the initial vertex and let j  denote 

the customer to append next. Let iq  denote the remaining capacity of the vehicle after serving 

customer i . The service at a customer ,i i V∈  begins at time max( , )i i iy a e= . The generalized 

cost of going from customer i  to customer j  is estimated as: 

1 2 3 4g( , , ) ( ( )) ( ( )) ( )ij j i i j i i ij i ji j d y a s l a s t q dδ δ δ δΔ = + − + + − + + + −  

 

The parameter 2δ  takes into account the “slack” between the completion of service at i  and 

earliest feasible beginning of service at j , i.e. max( , )j i i ij jy y s t e= + + . Following Solomon’s 

approach (1987), the parameter 3δ  takes into account the “urgency” of serving customer j  
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expressed as the time remaining until the vehicle’s last possible start. The parameter 4δ  is 

introduced in this research and takes into account the capacity slack of the vehicle after 

serving customer j .  

 

If customer j  is infeasible, i.e. it cannot be visited after serving customer i , the cost of ending 

customer 'i s route and starting a new one to serve customer j  is estimated as:  

0 1 0 2 3 0 4 maxg( , , ) ( ) ( )j j j j ji j d y l t q dδ δ δ δ δΔ = + + + − + −  

 

The parameter 0δ  is the cost of adding a new vehicle. The same GNNH can be applied to 

VRPSTW with the addition of two terms. For feasible customers: 

 

1 2 3 4

5 6

g( , , ) ( ( )) ( ( )) ( )

[ ] [ ]
ij j i i j i i ij i j

j j j j

i j d a a s l a s t q d

e a a l

δ δ δ δ

δ δ+ +

Δ = + − + + − + + + − +

+ − + −
 

The parameters 5δ  and 6δ  are added to account for possible early or late service penalties 

respectively; for infeasible customers 0δ is added. With soft time windows, the service at a 

customer ,i i V∈  begins at time #max( , )i i iy a e= . For problems with general time windows, 

i.e. two or more time window intervals, the generalized cost is calculated for each time 

interval and the least expensive interval provides the generalized cost for that particular 

customer.  

 

The auxiliary route heuristic is defined as r 0( , , , )iv C vΔH where 0 1 6{ , ,...., }δ δ δΔ=  are the 

parameters of the generalized cost function, iv  is the vertex where the first route starts, C  is 

the set of customers to route, and 0v the depot where all routes end and all additional routes  
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start – with the exception of the first route that starts at iv .  In all cases, the deltas are positive 

weights that satisfy: 1 2 3 1δ δ δ+ + =  and 0 {0,1,...,6}i iδ ≥ ∈ .  

 

(b) The Route Construction Algorithm 

In this algorithm, denoted cH , routes are constructed sequentially. Given a partial solution and 

a set of unrouted customers, the algorithm uses the auxiliary heuristic rH to search for the 

feasible least cost set of routes. The algorithm also uses an auxiliary function w( , ,g, )iv C W

that given a set of unrouted customers C , a vertex iv C∉ , and a generalized cost function 

g( , , )i jv vΔ  returns a set of vertexes with the lowest generalized costs g( , , )i jv vΔ  for all 

jv C∈ .  

 

Functions or Algorithms: 

rH : Route building heuristic. 

w( , ,g, )iv C W : returns set of vertexes with the lowest generalized costs 

Data:  

C : Set of customers to route (not including the depot 0v ) 

 LLimit = initial number of routes or best known lower bound 

W : Width of the search, number of solutions to be built and compared before adding a 

customer to a route. 

Δ  :  space of the route heuristic generalized cost function parameters 
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START cH

0start v←  1 

0start v←  2 

0bestSequence v←  3 
# #vehicles min veh lowestCost← ← ←∞  4 
Ccopy C←  5 

for each Δ ∈Δ  6 
   while C ≠ ∅  AND #LLimit vehicles<  AND # #vehicles min veh≤ do 7 

   min( ,| |)W W C←  8 

   
* w( , ,g, )C start C W←  9 

    for each *
iv C∈  10 

 if r 0c( ( , , , ))ibestSequence v C v∪ ΔH < lowestCost  then 11 

   r 0c( ( , , , ))ilowestCost bestSequence v C v← ∪ ΔH   12 

ilowestNext v←  13 
   end if  14 

 end for  15 
start lowestNext←  16 

\C C lowestNext←  17 

r 0( , , , )R bestSequence lowestNext C v← ∪ ΔH  18 
bestSequence bestSequence lowestNext← ∪  19 
# vehicles ← cardinality of the set of routes R  20 

   end while 21 
  C Ccopy←  22 
   if # #min veh vehicles>  23 
   # #min veh vehicles←  24 
   end if 25 
end for26 

Output:   
Best set of routes R  that serve all C  customers 

END cH  
 

The conditions in the while-loop that starts in line 7 reduce the number of unnecessary 

computations after a lower bound have been reached or when a particular instance of the cost 

parameters Δ ∈Δ are producing a solution with a larger number of routes. The generalized 

cost function g that is used in rH  must not be confused with the objective cost function c 
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that is used in cH  or the improvement heuristic iH ; the latter cost function is the sum of the 

accrued vehicle, distance, time, or penalty costs as indicated in the objective function.  

 

(c) The Route Improvement Algorithm 

After the construction is finished, routing costs can be reduced using a route improvement 

algorithm. The improvement algorithm works on a subset of routes S . In this algorithm two 

functions are introduced. The function k ( , , )p ir S p  returns a set of p  routes that belong to 

S  and are located in the proximity of route ir . In this research, the distance between routes’ 

centers of gravity was used as a measure of geographic proximity. By definition, the distance 

of route ir  to itself is zero. Hence, the route ir  is always included in the output of the set 

function k ( , , )p ir S p . 

 

The function k ( , )s R s  orders the set of routes R  from smallest to largest based on the number 

of customers per route and then returns a set of 1s ≥  routes with the least number of 

customers; e.g. k ( ,1)s R  will return the route with the least number of customers. If two or 

more routes have the same number of customers, ties are solved drawing random numbers. To 

simplify notation the term ( )C S  is the set of customers served by the set of routes S .  

 

Functions or Algorithms: 

cH : Route building heuristic 

ks  and kg : route selection functions 

Data:  

W : Number of solutions to be built and compared in the construction heuristic 
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Δ :  Generalized cost parameters of the auxiliary route heuristic  

s:  Number of routes potentially considered for improvement 

p : Number of neighboring routes to ir  that are reconstructed 

R : Set of routes 

LLimit = lowest number of vehicles or stop condition for the cH heuristic 

 START iH
min( ,| | 1)s s R← −  1 
min( , )p s p←  2 
k ( , )sS R s R← ⊆  3 

' \S R S←  4 
while | | 1S >  do 5 

* k ( ,1)sr S←  6 
*k ( , , )pG r S p←  7 

c r' ( , , , , , ( ), )G W s p C G LLimit← ΔH H  8 
if c( ')G < c( )G  then 9 
 \R R G←  10 
 'R R G← ∪  11 

\S S G←  12 
 'S S G← ∪  13 
 end if 14 

k ( ,1)sr S=  15 
\S S r=  16 

if | ' | 0S > then 17 
 ' k ( ',1)sr S=  18 

'S S r← ∪  19 
' '/ 'S S r←  20 

  min( , | |)s s S←  21 

 min( , )p s p←  22 
end while 23 

Output:   
R  set of improved routes 

END iH  
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(d) Start time improvement algorithm  

With soft time windows, to reduce the number of roads during the construction and 

improvement algorithms, the service at a customer ,i i V∈  begins at time #max( , )i i iy a e= . 

However, once the algorithm iH finishes, the sequence of customers per route is defined and 

some early time windows may be unnecessary.   

 

This algorithm eliminates unnecessary usage of early time windows. The algorithm operates 

backwards, starting from the last customer, the algorithm verifies if a service time i iy e< can 

be moved to i iy e=  without violating the following customer time window. Assuming that 

customer j  follows customer i , then the service time can be moved later if two conditions are 

met: (1) i i ij je s d l+ + ≤  if customer j  is not using a soft time windows or (2) #
i i ij je s d l+ + ≤  

if customer j  is using a late soft time window. In the former case, the service time for 

customer i  is set to min( ( ), )i j i ij iy l s d l= − +  ; in the latter case, the service time for customer

i  is set to #min( ( ), )i j i ij iy l s d l= − + . 

 

Next section compares the IRCI against other solution approaches using standard benchmark 

problems for the VRPHTW and VRPSTW. 

4. COMPUTATIONAL RESULTS  

As seen in the previous section, at its core the IRCI algorithm is a construction algorithm were 

routes are sequentially built and improved. This section compares the results of the IRCI 

algorithm against other solution methods that report solution quality and computation time on 

Salomon benchmark problems for the VRPHTW and VRPSTW. The comparison only 
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includes other construction algorithms or solution approaches that were designed for both 

hard and soft time windows.  

 

The well-known 56 Solomon benchmark problems for the VRPHTW are based on six groups 

of problem instances with 100 customers. The six problem classes are named C1, C2, R1, R2, 

RC1, and RC2. Customer locations were randomly generated (problem sets R1 and R2),   

clustered (problem sets C1 and C2), or mixed with randomly generated and clustered 

customers (problem sets RC1 and RC2). Problem sets R1, C1, and RC1 have a shorter 

scheduling horizon, tighter time windows, and fewer customers per route than problem sets 

R2, C2, and RC2 respectively.  

 

<< INSERT TABLE 1 HERE>> 

 

Table 1 presents the summary of the results when construction heuristics for the VRPHTW 

are compared. Against the three construction heuristics proposed by Solomon, Potvin et al. 

and Ioannou et al., the IRCI algorithm outperform them all in classes R1, C2, RC1, and RC2 

while ties with the best in classes R2 and C1. Distance-wise, the performance of the IRCI 

algorithm is superior in all six classes of problems. The IRCI produces results in a relatively 

short time, less than12 seconds per 100 customer problems on average; however the other 

simpler algorithms have shorter running times. The IRCI results presented in Table 1 and 2 

were obtained first running a VRPSTW version of the Solomon instances to obtain a set of 

lower bounds and STW results, and then using these bounds the VRPHTW was solved 

afterwards. The reported time for the IRCI corresponds to the total time to solve both types of 

problems for all 56 Solomon instances. The other references solve only the VRPHTW type.  
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<< INSERT TABLE 2 HERE>> 

 

 

Table 2 presents the summary of the results when the IRCI algorithm is compared against two 

metaheuristics presented in the literature review that were explicitly designed to solve both 

soft and hard time windows: the tabu search heuristics of Taillard et al. (1997) and the 

composite metaheuristic of Ibaraki et al. (2005). As in Table 1, the reported time for the IRCI 

corresponds to the total time to solve both types of problems for all 56 Solomon instances. 

The other references solve only the VRPHTW type. 

 

When compared to the Tabu heuristic of Taillard et al., with its 20 iterations, the results are 

similar, though the IRCI is faster in computation time even accounting for the different 

processing speed. The solution method proposed by Ibaraki et al. has a very good solution 

quality but at the expense of lengthy computation times.  

 

In the soft time window benchmark problems, the results of the IRCI are compared against the 

results of prerequisites: Balakrishnan (1993) – denoted BAL in Tables 3 and 4 – and  Chiang 

and Russell (2004). The latter has two solution methods: tabu search and advance recovery 

which are denoted Tables 3 and 4 by the initials TB and AR respectively.   

 

<< INSERT TABLE 3 HERE>> 
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Balakrishnan (1993) and Chiang and Russell (2004), the only references with time and cost 

results for a standardized set of problems, solve a subset of Solomon problems setting a maxP   

that can be either 10, 5, or 0 % of the total route duration 0 0( )l e− . Balakrishnan (1993) and 

Chiang and Russell (2004) also set a maximum vehicle waiting time limit maxW . The 

maximum waiting time limits the amount of time that a vehicle can wait at a customer 

location before starting service, i.e. a vehicle can arrive to customer i  only after

max max( )ie P W− − . Since the VRPSTW is a relaxation of the VRPHTW, a maximum waiting 

time constraint maxW  is clearly opposed to the spirit of the VRPSTW since a new constraint 

completely unrelated to time windows is added1. Despite these shortfalls, a max 10%W =  

constraint is added, mainly to facilitate comparisons in a level playing field.  

 

Table 3 shows the results for the R1 benchmark problems with soft time windows; results for 

max 10%P =  and max 0%P =  are shown. The latter is equivalent to the VRPHTW problem but 

with the addition of the max 10%W =  constraint. In addition to the number of vehicles and 

distance, Tables 3 and 4 also show the number of customers where the time windows have 

NOT been relaxed (%HTW); a higher %HTW indicates a better solution quality. As expected, 

when max 0%P =  the corresponding % HTW are all equal to 100 because there is no room to 

relax the customers' time windows.  

 

It can be observed that the IRCI algorithms perform very well against Balakrishnan’s 

heuristic. Against tabu search (TS) the IRCI is almost tied but it performs betters in terms of 

                                                 
1 Further, if there are carrier’s costs associated with waiting time, e.g. parking, these costs can be incorporated 
into the routing cost function c rather than imposing a hard time waiting constraint which is not usually found in 
practical problems.  
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customers that do not have time window violations. The IRCI solutions are not as good as the 

advance recovery (AR) method. However, regarding computation times, the IRCI is 

undoubtedly faster than the TS and without a doubt much faster than the AR method.  

 

<< INSERT TABLE 4 HERE>> 

 

The same trends are repeated in the RC1 benchmark problems with soft time windows. The 

IRCI outperforms Balakrishnan’s and is competitive with the tabu search (TS) and advance 

recovery (AR) approach but at significantly faster running times.  

 

It can be observed that on average the IRCI performs well in benchmark instances against 

simpler and more complex algorithms for hard and soft time windows. The average CPU 

times are more than reasonable given the relatively modest processing capabilities of a 1.6 

Mhz Pentium M laptop.  In general, computation times are difficult to compare due to the 

differences in processing power.  The interested reader is referred to Dongarra’s work (2007) 

which includes the results of a set of standard programs to measure processing power and to 

compare the processing power of different machines. However, comparisons are not 

straightforward because not all the processors are included and there always differences in 

codes, compilers, and implementation computational efficiency.  

5. DISCUSSION 

The relative simplicity of the IRCI allows for a straightforward algorithmic analysis. The 

auxiliary heuristic rH is called by the construction algorithm no more than | |nW Δ  times; 

where n is the number of customers. Hence, the asymptotic number of operations of the 
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construction algorithm is of order r( | | ( ( )))nW O nΔ H  where r( ( ))O nH  denotes the 

computational complexity of the auxiliary algorithm to route ncustomers.  

 

The improvement procedure calls the construction procedure a finite number of times. The 

number of calls is bounded by the number of routes | |R . Further, the called computational 

time of the construction algorithm is r( | | ( ( )))mW O mΔ H  where m n<  because only a subset 

of routes is iteratively improved.  

 

It is clear that the complexity and running time of the auxiliary heuristic rH will have a 

substantial impact on the overall running time. Hence, a generalized nearest neighbor 

heuristics of (GNNH) is used due to its reduced number of operations and computation time.  

In particular, if the GNNH has 2( )O n  and W n< , then the worst case complexity for the 

IRCI algorithm is of order 3( )O n .   

 

To test the average complexity, instances with different numbers of customers are run. Firstly, 

the first 25 and 50 customers of each Solomon problem are taken to create instances with n=

25 and n=50 respectively. Secondly, to create and instance with n=200 customer, for each 

customer in the original Solomon problem a “clone” is created but with new coordinates but 

still keeping the characteristics of the problem as clustered, random, or random-clustered.  

The summary results for the 56 Solomon problems are shown in Table 5. The results are 

expressed as the ratio between each average running time and the running time for n=25. To 

facilitate comparisons, the corresponding increases in running time ratios for 2( )O n  and 
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3( )O n  are also presented. The results indicate that the average running time is increasing by 

a factor of 2( )O n  as expected from the complexity analysis and the last column of Table 5. 

 

 

<< INSERT TABLE 5 HERE>> 

 

The proposed IRCI approach can accommodate cost functions that cover most practical 

applications. The cost functions must be positive functions of fleet size, distance, time, or 

penalties.  Cost functions can be asymmetrical, e.g. p ( ) p ( )e lt t≠  where t accounts for the 

early or late time. Additionally, cost functions are not required to be linear or identical. 

Similarly, symmetry is not required and dij≠ dji  or  tij≠ tji does not affect the complexity of the 

algorithm. That is, the corresponding penalty function can be non-convex and discontinuous 

as long as it is piecewise linear. In addition, customers with two or more time windows can be 

easily included in the auxiliary route construction algorithm. In addition, the number of routes

m is not specified initially and it is an output of the solution algorithm. The bounds for the 

VRPHTW can be generated endogenously solving a relaxed VRPSTW beforehand.  

 

The relatively simplicity and generality of the IRCI are important factors in real-world 

applications. Although solution quality and computation times are two key factors to evaluate 

vehicle routing heuristics, for practical implementations it is also crucial that algorithms are 

relatively simple and flexible (Cordeau et al., 2002). According to Cordeau et al (2002) the 

majority of the commercial software and in-house routing programs are still based on 

somewhat simple and unsophisticated methodologies dating back to the 1960s. Some of the 

reasons that explain this status quo are: (a) dispatchers preference for algorithms/programs 

that are highly interactive and allow for manual improvements and the manipulation of 
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constraints and customer priorities, (b) better results on benchmark problems are usually 

obtained at the expense of too many parameters or complicated coding that lacks flexibility to 

accommodate real-life constraints, (c) dispatcher may find algorithms with too many 

parameters difficult to calibrate or even understand, and (d) solution approaches that are 

markedly tailored to perform well on the benchmark problems may lack generality and 

robustness in real-life problems. As indicated by Golden et al. (1998), algorithms should also 

be compared not only by the number of parameters but also by how intuitive and reasonable 

these parameters are from a users perspective. 

6. CONCLUSIONS 

The main contribution of this paper is to propose an efficient, simple, and flexible algorithm 

to deal with general time window constraints and objective functions. The proposed IRCI 

algorithm provides high quality solutions and requires small computation times when 

compared with existing algorithms that can handle both hard and soft time window 

constraints. For a problem with 100 customers, the joint solution of soft and hard time 

window problems requires a few seconds The developed IRCI algorithm is based on a 

modular and hierarchical algorithmic approach. Its average running time is of order 2( )O n  

and the worst case running time is of order 3( )O n .  

 

The flexibility of the IRCI algorithm allows for a sequential and integrated solution of routing 

problems with soft and hard time windows. With both types of solutions, dispatchers can 

easily identify the customers and time windows that are increasing the number of routes. Fast 

solution times allow for cost-service tradeoff studies. In addition, soft time window solutions 

provide a workable and realistic alternative plan of action when the problem with hard time 

windows is infeasible. 
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TABLES 

 

Table 1. VRPHTW Results for Construction Algorithms vs. IRCI 

Average Number of Vehicles by Problem Class

Method  R1  R2 C1 C2 RC1  RC2 

(1) Solomon (1987)  13.58  3.27 10.00 3.13 13.50  3.88 

(2) Potvin et al.  (1993)  13.33  3.09 10.67 3.38 13.38  3.63 

(3) Ioannou et al. (2003)  12.67  3.09 10.00 3.13 12.50  3.50 

(4) IRCI  12.50  3.09 10.00 3.00 12.00  3.38 

Average Distance       

Method  R1  R2 C1 C2 RC1  RC2 

(1) Solomon (1987)  1,437  1,402 952 693 1,597  1,682

(2) Potvin et al.  (1993)  1,509  1,387 1,344 798 1,724  1,651

(3) Ioannou et al. (2003)  1,370  1,310 865 662 1,512  1,483

(4) IRCI  1,262  1,171 872 656 1,420  1,342

Computation time for all 56 problems: (1) DEC 10, 1 run, 0.6 min.; (2) IBM PC, 1 run, 19.6 min.; 

(3) Intel Pentium 133 MHz, 1 run, 4.0 min. (4) Intel Pentium M 1.6 Mz, 10.9 min 

 

  



  27 

 

 

Table 2. VRPHTW Results for Metaheuristic Algorithms vs. IRCI 

Average Number of Vehicles by Problem Class

Method  R1  R2 C1 C2 RC1  RC2 

(1) Taillard et al. (1997)  12.64 3.00 10.00 3.00 12.08  3.38 

(2)  Ibaraki et al. (2002)  11.92 2.73 10.00 3.00 11.50  3.25 

(3) IRCI  12.50 3.09 10.00 3.00 12.00  3.38 

Average Distance by Problem Class   

Method  R1  R2 C1 C2 RC1  RC2 

(1) Taillard et al. (1997)  1,220.4 1,013.4 828.5 590.9 1,381.3  1,198.6

(2)  Ibaraki et al. (2002)  1,217.4 959.1 828.4 589.9 1,391.0  1,122.8

(3) IRCI  1,261.6 1,170.8 871.8 655.6 1,419.8  1,342.4

Computation time for all 56 problems: (1) Sun Sparc 10, 261  min.;  (2) Pentium III 1 GHz, 250 

min.; (3) Intel Pentium‐M 1.6 Mhz 10.9 min 
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Table 3. VRPSTW Results for R1 Problems. 

Wmax 10% 10% 

Pmax 0% 10% 

Method 
(1) 

BAL 

(2) 

TS 

(3) 

AR 

(4) 

IRCI 

(1) 

BAL 

(2) 

TS 

(3) 

AR 

(4) 

IRCI 

R
10

1 

# Veh. 19 19 19 19 15 14 12 13 

Distance 1,915 1,710 1,692 1,639 1,832 1,388 1,212 1,493 

% HTW 100 100 100 100 62 49 8 39 

R
10

2 

# Veh. 19 17 17 17 14 13 10 12 

Distance 1,890 1,520 1,511 1,481 1,569 1,266 1,173 1,463 

% HTW 100 100 100 100 81 59 33 60 

R
10

3 

# Veh. 
 

14 13 13 13 11 10 11 

Distance 
 

1,225 1,304 1,284 1,657 1,063 1,013 1,274 

% HTW 
 

100 100 100 83 65 58 73 

R
10

9 

# Veh. 13 13 12 12 12 11 10 11 

Distance 1,492 1,280 1,165 1,240 1,431 1,102 1,005 1,280 

% HTW 100 100 100 100 90 72 47 82 

A
V

ER
A

G
E 

# Veh. 17.0 15.8 15.3 15.3 13.5 12.3 10.5 12.3 

Distance 1,766 1,434 1,418 1,411 1,622 1,205 1,101 1,467 

% HTW 100 100 100 100 79.0 61.2 36.5 66.3 

Computation time for each STW problem: (1) 25Mhz 80386, 17 to 73 seconds; (2) 

2.25 Ghz Athlon, 52 to 82 seconds; (3) 2.25 Ghz Athlon, 448 to 692 seconds; (4) 1.6 

Ghz Pentium-M, 4.5 to 4.9 seconds 
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Table 4. VRPSTW Results for RC1 Problems. 

Wmax 10% 10% 

Pmax 0% 10% 

Method 
(1) 

BAL 

(2) 

TS 

(3) 

AR 

(4) 

IRCI 

(1) 

BAL 

(2) 

TS 

(3) 

AR 
(4) IRCI 

R
C

10
1 

# Veh. 16 15 15 15 14 15 11 14 

Distance 2,012 1,719 1,651 1,644 1,795 1,569 1,275 1,839 

% HTW 100 100 100 100 61 62 27 73 

R
C

10
2 

# Veh. 14 13 13 13 13 12 11 13 

Distance 1,808 1,519 1,530 1,575 1,719 1,307 1,222 1,632 

% HTW 100 100 100 100 83 68 56 81 

R
C

10
3 

# Veh. 12 11 11 11 12 10 10 11 

Distance 1,679 1,293 1,284 1,318 1,530 1,228 1,119 1,400 

% HTW 100 100 100 100 92 85 65 92 

R
C

10
6 

# Veh. 
 

12 12 12 13 12 10 12 

Distance 
 

1,445 1,409 1,412 1,620 1,262 1,160 1,487 

% HTW 100 100 100 100 97 77 49 92 

                    

A
V

ER
A

G
E 

# Veh. 14.0 12.8 12.8 12.8 13.0 12.3 10.5 12.5 

Distance 1,833 1,494 1,469 1,488 1,666 1,342 1,194 1,590 

% HTW 100 100 100 100 83.3 73.0 49.2 84.5 

Computation time for each STW problem: (1) 25Mhz 80386, 17 to 73 seconds; (2) 

2.25 Ghz Athlon, 52 to 82 seconds; (3) 2.25 Ghz Athlon, 448 to 692 seconds; (4) Intel 

Pentium-M 1.6 Mhz 4.5 to 4.9 seconds 
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Table 5. VRPTW Average Run Time Ratios – VRPHTW 

(1) 
 
n  
 

(2) 
 

2( )O n  

(3) 
 

3( )O n  

(4) 
Run 
Time 

Ratio* 

(5)= (4)/(3)*100 
 

% 3( )O n  

25  1  1 1.0 100% 

50  4  8 2.9 36%

100  16  64 15.0 23%

200  64  512 86.3 17%

* The ratio of running times is taking the run time for n=25 as a base. 


